

an Aresco
 PUBLICATION

P. O. BOX 43 RUDUBON. PA. 19407

To:

PET
 PARADE

Terry- Recently, I became the owner of a Model 28 teletype, Perhaps you could tell me if unit with my PET would be my PET. It certainly hard copy of existing progr at a reasonable cost - Mlbert E. Nichols

Albert - No, not that we know of. - Terry

Terry- Thank you for printing my name and address in The PET Prose, Issue No. 3

I would like to address the following questions to The PET Parade:
read with interest that Commodore has developed a printer for my PET, however, to date, I have received no information of its availability. Why hasn't commodore announced this option to PET owners? Also, is it possible to interface my PET with an IBM Selectric typewriter?
I enjoy your paper very much, and appreciate your candor with your readers. - George

George - You're quite welcome. We're as puzzled as you are by Commodore's non-communicative attitude. But send them your name and PET serial number to get on the mailing list." Yes, t's possible - we're researching it now. - Terry

Terry - The competator is ecommended as a replacement for The PET Paper. - Enrico Conti

Enrico - Thank you. We're still looking - lots of new ideas have come in. - Terry

Terry - I just finished re-reading issue \#2 and I think it's great...better than the Congratulations, m opinion. an interesting and informative publication. - John Quass

Terry - How do I keep my pet rom dropping θ^{\prime} s when I want something like $\$ 19.30$ to be printed? Now I just get $\$ 19.3$ printed. - Peter L.A. Oakes

Peter - Use the NUMBER EDIT on our Useful Routines tape. As soon as we get our printer, we'll publish a listing of it.
Terry - I have figured out how to split and merge programs weturn. You simply executable instruction (disinterpreted) in the proper place the proper place. iricky, but Sherritt

George - Haven't had a chance to try it yet. Maybe one of our readers can use it, though. Terry

Terry - 1 am thinking very seriously of filling my RAM fry FORETHOUGHT FRODUCTS, however, I hesitate to make such an investment with so little information. Do you plan to evaluate this or similar products in kit form?

For your information I talked to Commodore yesterday by willing to accept payment wer the 2 nd a sept payment ror printer, a shipping date for the cassette was vague and for the printer even vaguer ansor the are waiting for a new the cassette which is supposed to "look" better. They now quote three weeks on PET. Has anyone
figured out how to translate TI "PET"? "PET"? - James B. Trimble

James - We'll do an evaluation as soon as we can - but not for a few months yet. You might you can get more info . See if

Terry - After an inauspicous start, I think issue 3 is finally what I hoped to get. Good shot.

The stuff you've reprinted from SPHINX is some of what information I find I need. I wonder: could you send me an address to communicate with that group and get on their mailing ist? Teacher's Shelter Oakland Public Schools doesn't

Sound awfully promising to me Here is how

Here is how PET stores floating point numbers (a little contribution in exchange).

Bytes 1 and 2: the name and type of the variable
Byte 3: Exponent
Byte 4: First bit (high order) s sign; rest of byte is bits 2-8 of mantissa
Bytes 5-7: more mantissa.
Where did bit 1 of mantissa go This bit is implied. The scheme ero is
and all represented by exponen -
a non-zero number is given by Example:

STORES AS
BYTE $3=127$, BYTE $4=32=0019000 \emptyset_{2}$, BYTES $5,6,7=0$
-5/16 STORES AS SIGN MANTISSA
BYTE $3=127$, BYTE $4=160=1010000 \theta_{2}$, BYTES $5,6,7=\emptyset$

This has some implications for how the arithmetic subroutines must work (I haven't verified this yet, though). In multiplication, two numbers with mantissas M_{1} and M_{2} stored has a $\mathrm{product}^{*}$ with mantissa $M_{1}+M_{2}+$ $M_{1}{ }^{*} M_{2}$. In addition, when the exponents are equalized by
shifting the mantissa of the smaller number, the implied 1 has to be inserted (probably by a SEC before a bunch of ROR's) or maybe the whole thing is done with some clever logic tricks, so that the justification of the exponents and the addition is done all at once.

I hope this helps with the decoding/documentation problem with the BASIC. The annoyance of nothaving such documentation, together with the childish trick of defeating simple PEEKs into the Basic area, is what triggered off my own decoding project when it turned out that I was losing too many significant digits due to roundofferror; a 10 byte mantissa would probably be ok for me, but there's no SET DIGITS instruction
(I'd appreciate it if you withheld my name and address From what I've read, Commodore is very paranoid about losing the secrets of their BASIC, and I don't want to get on their blacklist.) - A. Nony Mous

Dear A.N.M. - Thank you. SPHINX can be reached via Pete Rowe, Computer Science Dept., Lawrence Hall of Science, Berkeley, CA.

Terry - I've thought of something you just might like:
As you probably know, the RAM that holds the contents of the screen starts at 800 hex. ern' have you memory? I have.

Below is a program that will fill the screen with random characters in random positions.
$10 \mathrm{SC}=16 \uparrow 3 * 8$

$38 \mathrm{X}=\mathrm{INT}(\mathrm{RND}(5) * 48)$
$48 Y=\operatorname{INT}($ RND $(3) * 25)$
$50 \mathrm{C}=\mathrm{INT}($ RND $(9) * 256)$
60 POKE SC $+X+Y * 40$, C
78 GOTO 30
une 60 will take a character corresponding to the number and put it in position X, Y, where X is from 0 to 39 and Y i from 9 to 24 .
Note that the number C is not always the same as the value you get for that character using the ASC function. The easiest way to get the value for a characte the first position of the screen and

That brings me to another That bring can tell what' advanthe screen in a certain on the screen in a certain command.

A word of warning -- the values for a character go from 8 to 255.

Using POKE and PEEK does wonder for all of my graphic games so I thought I'd tell you about it Russell Selph

Thanks Russell. - Terry
Rick - I received your sample copy of the PET paper and, really, didn't think much of it started short software exercises. I read further! Enclosed is an order for your PAPER. - Gene Planchak

Gene - Hope this format change does good things for your interest. - Rick

Terry - There is a glitch in my copy of Useful Routines. There is a Sort Demo, but I cannot
load Sort. Please send me a listing of Sort. I had some difficulty loading this tape, but succeeded after several tries. Everything works except Sort

Here are my suggestions for names for the paper:

1. "Pet Paper" Use upper case and ewer case letters Commodore uses all upper case. Commodore uses all upper case. and we are all veterans or veterinarians of the PET (or will be)
2. "PUP PAPER" For Pet Users Paper (excuse the slight

edundnacy), and, a PUP is PET.

- Hews McCann

Hews - SORT ROUTINE
10 FOR $\mathrm{I}=1$ TO N
2 FOR $\mathrm{J}=1$ TO $\mathrm{N}-1$
30 IF A\$(J) >A4 (J+1) GOTO 50
$40 \quad \mathrm{~S} \$=\mathrm{A} \$(\mathrm{~J}): \mathrm{A} \$(\mathrm{~J})=\mathrm{A} \$(\mathrm{~J}+1)$
: $\mathrm{A} 4(\mathrm{~J}+1)=\mathrm{S} \$$
50 NEXT J
N is the number of items to be sorted. S\$ holds the smaller value until the larger value is moved up. - Terry

pet prose

here are many people who want specialized application programs to use on their PETs, but who are not knowledgeable enough to design or to write them. If you can write significant software in some specialized field (i.e., education, engineering, business, etc.) and are willing to do so, we may be able to help willing to pay you to write programs for them. Send us \$25.0日 and we'll print your name, address, phone number, and field of expertise in the next 10 issues of The PET Paper.

Wes Fasnacht (215) 436-2886 West Chester State College West Chester, PA 19380
(omming \& Systems Development

Don Pegnatalú
1420 Centre Ave. \$1907
Pittsburgh, PA 15219
*Education, Engineering, Business, Games, Photographic Applications

We report this incident without comment:

David Smith has 3 brand new 019

 ROMs - 2 of them don't work. (L. Tramiel) says it's impossible - the ROM absolutely, positively works every time Commodore's ROM test programs but the gla ROM still won' work.Gary Wagner drove from LA to Palo Alto to hand deliver his PET for repair to the cassette: the cassette would not recognize a fileheader. Commodore said they couldn't fix it while he waited - not even within the next day or so. He drove home, waited 3 weeks for his PET - i arrived. First thing he noticed was a new hairline crack on the
aisplay housing. He turned it on, typed 10 REM and presssed Return; the cursor disappeared. Commodore had replaced his original ROM with 019

Tried to load a program but no-go - PET still wouldn't recognize a file header, He openeant up - the screw was the cassette
Called Commo
to send it back. He said he wanted the original ROM instead of the 019 - Commodore said it would cost $\$ 30.90$.

So - now keyboard locks out - he can't load or save programs and commodore won t admit the la ROM could possibly be faulty.
please publish my name as a prospective purchaser/author (circle one of customized PET Programs. I enclose full payment as described in the PET Prose Column.

MAIL, TO:

InTRO TO BASIC

In our Intro to Basic, we have covered the following topics: LINE NUMBERS KEYWORDS LIST CONDITIONS VARIABLES GOTO DATA..RESTORE PRINT FOR...NEXT...STEP
ARITHMETIC OPERATORS
Now let's look at INPUT, GOSUB, RETURN, and IF...THEN. Once we've finished this section, we'll have enough information to actually write a real working program. Look back at issues il, ${ }^{2}$, and 3 for - you'll find rany yourul little techniques you're ready to use effectively. Read the article in this issue entitled, "How to Write a BASIC Program." Then write one. Let us know the results of your efforts. Does your program do what you expected it to do?

INPUT The INPUT keyword instructs PET to wait for you to enter data from the keyboard. Instead of storing information in a DATA statement, data can be entered directly during program execution:

10 INPUT A\$

You can enter more than one item at a time, using a comma to separate them:

10 INPUT A\$,B,C
When you are responding to INPUT during a program run, you INPUT during a program run, you items of information as the program expects. And each of the items must be separated by a comma. For example:
if INPUT AS,B\$
requires two items to be typed in during the program. User response might be SMITH, JOHN. SMITH will be stored in AS, while JOHN is stored in B\$.

The INPUT statement has a rather helpful feature called a "prompt," which permits you to tell the user what he/she is being asked to do when PET is waiting for input from the keyboard:
10 INPUT "ENTER LAST NAME";AS $2 g$ INPUT "ENTER NAME (LAST, FIRST) " $; A \$$, B
Notice the semi-colon following the prompt and the comma separating the data items.

Warning: if the user presses RETURN without typing any data, PET jumps out of the program and execution stops. Issue \#l has an article on the GET keyword which will help alleviate this problem. (Also see corrections in \#2.)

GOSUB Sometimes a group of instructions may be repeated several times during a program. It is useful to be able to enter the code once for these instructions once, jump to them when they're needed and go back to the original program flow when inished. ing can be accomplup k usirg the which transfer control to and from a section of code called a subroutine.

10 INPUT A
20 GOSUB 100
30 PRINT B
40 GOSUB 190
50 PRINT B
60 END
$100 \mathrm{~B}=\mathrm{A} \mathrm{*}_{\mathrm{A}}$ This is the
$110 \mathrm{~A}=\mathrm{B}$ subroutine.
120 RETURN
Note the "END" keyword in line 60. This is necessary when using subroutines to keep your program from "falling" into the routine. Without the END, PET
doesn't know enough to stay out of the subroutine, and you'l sce a ?RETURN WITHOUT GOSUB ERROR message on the screen.

Note that the line number in the GOSUB statement is the first line of the subroutine and kenord it returns control to keywor it retur inmediately following the cosur in our example, the code is executed like this: Suppose we input for A

1. LINE 10 INPUT A
2. LINE 20 GOSUB 100
3. LINE 10日 $B=A^{*} A$
4. LINE $110 \mathrm{~A}=\mathrm{B}$
5. LINE 120 RETURN
6. LINE 30 PRINT B
7. LINE $100 \quad B=A * A$
8. LINE $110 \mathrm{~A}=\mathrm{B}$
9. LINE 129 RETURN
10. LINE 50 PRINT
11. LINE 60 END

Try this program to get a 'feel' for subroutines.

IF...THEN We've already seen how the IF... GOTO keyword works, permitting control to branch to another statement depending on condition.

10 IF $\mathrm{A}=5$ GOTO 100
IF...THEN works much the same way, but it permits you to use any keyword except GOTO, following THEN:

10 IF $A=5$ THEN $B=10$
20 IF $A=10$ THEN PRINT A
30 IF $A=15$ THEN GOSUB 200
IF $A=20$ THEN INPUT"ENTER A NUMBER"; B

Sometimes you may want to branch to a different section of code for each value of a specific variable, and an INDEXED GO'NO would be helpful PET utilizes the keyword ON.. COOTO to accomplish this.

10 PRINT "DO YOU WANT TO | 1. ADD" |
| :--- |
| 20 PRINT " |
| 30 PRINT " |
| 2. SUBTRACT" |
| 40 PRINT " |
| 50 PRINT " |\quad 3. MULTIPLY"

30 PRINT "
3. MULTIPLY"

40 PRINT "
5. QUIT"

60 INPUT A
70 ON A GOTO 109, 200, 300, 400, 80
100 AS="
110 COSUB 50
$120 \mathrm{C}=\mathrm{A}+\mathrm{B}$
130 GOSUB 60
140 GOTO 10
$140 \mathrm{GOTO}=10$
210 GOSUB 50
$220 \mathrm{C}=\mathrm{A}-\mathrm{B}$
230 GOSUB 600
240 СОTO 18
$300 \mathrm{~A}=\boldsymbol{=}$ *"
310 GOSUB 500
$320 \mathrm{C}=\mathrm{A}$ * B
330 GOSUB 500
340 GOTO 10
$400 \mathrm{AS}=" / "$
410 GOSUB 500
$42 \mathrm{C}=\mathrm{INT}(\mathrm{A} / \mathrm{B})$
440 GOTO 10
500 A 1 NT
$590 A=1 N T(10 \star$ RND $(1)+1)$
$518 \mathrm{~B}=1 \mathrm{NT}\left(10 \star_{\mathrm{RND}}(1)+1\right)$
520 IF A>B THEN RETURN
$530 \mathrm{Al}=\mathrm{A}: \mathrm{A}=\mathrm{B}: \mathrm{B}=\mathrm{Al}:$ GOTO 520
609 PRINT $A ; A \$; B ;{ }^{n}={ }^{\prime \prime}$
610 INPUT D
626 IF C=D THEN PRINT "CORRECT": RETURN 630 PRINT "SORRY...TRY AGAIN.":GOTO 60e 640 END

Can you follow the code and see what happen? We've introduced a new kevword, RND in lines 500 and 510. This keyword uses PET's random number generator to randomly select a number in this program, the (See the article in this issue on RND.)

This program is a simple arithmetic drill. You can make the problems more complex by increasing the numbers in lines 10)
$50 \mathrm{~A}=\mathrm{INT}(10 \mathrm{~g}$ *RND(1)+1) for instance.

The INT function assures that the resulting number will be an integer. The fractional parts of the result are dropped, not rounded, so the INTeger whole number.

INT (3.142) becomes
INT (3.942) becomes 3
INT (-3.142) becomes -4
INT (-3.942) becomes -4
There's one more topic we need to discuss at this point: the DIM keyword.

DIM allows you to create lists or tables of data, all the items in which have the same name.

These lists ar usually referred to as "arrays." PET presently has a "bug" in the array handiling part of its software, so you are restricted to a maximum of 255 elements (data items) in any one array. The theory is that you can use 3 or 4 dimensions in an array, to form a table, but PET doesn't always perform properly to permit it.
This is a one-dimensional array. It has only one list of 25 data items.

DIM A (25)
This is a two dimensional array It has two lists of 5 elements. DIM B $(2,5)$
The FIRST parameter inside the parentheses represents the number of ROWS. The SECOND parameter, separated from the first by a comma, represents number of could this

Note that the FIRST number inside the parenthosis is the same as the number of rows and the second number in parens is the same as the number of columns. The values in the columns change more frequently than the values in the rows. A good example of this is our numbering system itself. We have digits o through 9 to work with - we can have as many rows as we like, but only 10 columns
$\begin{array}{llllllllll} & 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 9\end{array}$ $\begin{array}{llllllllll}10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19\end{array}$

In this example, the rows represent the "tens" place and the columns represent the "ones" or "units" place. And, as you can see, the "units" change more frequently than the "tens." Let's try it.
$10 \operatorname{DIM}$ A 10,10$) \quad$ ALLOCATE STORAGE 20 FOR $I=0$ TO 9 SET UP ROWS 30 FOR $\mathrm{J}=\mathrm{G}$ TO 9 SET UP COLUMNS 40 A $(1, J)=I * J$ 60 REM NOW PRINT
7 FOR I=0 TO $9 \quad$ SET UP ROWS 80 FOR $J=\emptyset$ TO $9 \quad$ SET UP COLUMNS 90 PRINT A $(I, J) \quad$ PRINT DATA 160 NEXT:NEXT

Some warnings:
Pet permits up to 255 elements in a ONE dimension array. You'll have to experiment with your unit to determine the number of elements permitted in a two dimension array - and the number permitted won $(8,28)$ consistent. I can get A(8, ${ }^{\prime}$, and $A(115,2)$ - which doesn t help me program portable software pable to run on another PET), since other units may not elements. A close friend can
get $A(8,26)$ and $A(118,2)$ - so check your unit before doing any extensive coding to handle arrays.
per allows 11 elements in a single dimension without requiring a DIM statement. DON'T TAKE ADVANTAGE OF THIS FEATURE: It will make your program difficult to read and/or modify later.

It's a good idea to put your DIM statements at the very beginning of your program. you may NOT dimension the same varible twice. If you try it, you'll get a ?REDIM'D ARRAY
ERROR MESSAGE.

Arrays can be dimensione

 dynamically during program execution:10 INPUT "HOW MANY PEOPLE ARE HERE"; A 20 DIM B\$(A)
30 FOR $I=1$ TO A
50 NEXT I NAME OF GUEST"*; I;:INPUT BS(I)
Well, that about covers the INTRO TO BASIC subjects. Beginning with the next issue, frequently some of the less keeping in mind keywords, still consider that you may "beginner." specific topics you'd like talk about, let us know.

YES! I'd like to subscribe to the PAPER and receive all ten issues of this year's volume! I enclose $\$ 15.00$ in full payment.

Name (Please print or type)
Address
City \qquad State \qquad Zip \qquad
Cash, Check, Money Order Enclosed \qquad
MC/VISA/BAC Number
Exp. Date \qquad
MC Interbank No.
Required Credit Card SignatureYou may let other PET owners in my area know I have a PET, so they can
'd like to see articles in the PAPER about: contact me.am interested in forming/joining (circle one) a PET Users group

MAIL TO: PAPER, P.O. Box 43, Audubon, PA 19407

STANDARD SYMBOLS

(H)	Cursor HOME	(0)	Reverse Field OfF
(C)	CLEAR Screen	(C)	Carriage Return
(B)	Cursor RIGHT	(1)	Shift On
(L)	Cursor LEFT	0	Delete
(1)	Cursor UP	(1)	Shift off
(D)	Cursor DOWN	\bigcirc	Space
(F)	Reverse FIELD on	©	Stop

tRICKS TO TRAIN YOUR PET

Readers have offered suggestions on how to avoid "falling the RETURN key is accidentally pressed.

First one: Open the keyboard as a logical file: use only strings or you'll get a "REDO FROM START" when RETURN is pressed.

10 OPEN $1,0,0$
2 INPUT $\# 1, \mathrm{~A}$
You can't get out of it except with a shifted RUN/STOP key.

Second, from George Sherritt:
10 POKE 3,1
20 INPUT A\$
30 PRINT AS
40 PORE 3,0
This eliminates the INPUT question mark and will not accept a null string for an answer. And you can't escape this without a shifted RUN/STOP, either.

FLASH

The PET has command completion. Type L shift i instead of LIST or type R shift u instead of RUN. BASIC recognizes these abbreviated commands and abbreviated commands and
executes the proper token. Also works for GOTO and other commands in a program where space is needed. (or speed of typing. space would be same)

John Groot noted that his PET returns a string ("1") at the end-of-file. If he checks for that string, his PET never falls to find the EOF

The series of articles "Introduction to BASIC," which continues in this issue, is intended to get you familiar with the syntax or grammar of a specific programming language BASIC

Now that you know how to speak correct BASIC - or at least know many useful "phrases" - what are your going to say?

Each PET purchaser probably has a slightly different reason for buying his or her PET. For some it was pure pleasure - computers like PET are fun! For others it was as a learning tool, others may intend to use it in their work, or even to start a business built around the PET!

So no matter how many programs other people write and offer for sale, sooner or later you are going to want to write a program precisely aimed at your original reason for purchasing your PET.
Your first few programs will probably be short calculation programs or simple you can program "on the fly"figuring out what you are going to do and typing in the few lines of BASIC you need as you go along. This is fine for simple programs, but as you write longer programs this method will get you in trouble. You will find yourself contantly LISTing your program to find out what you named a variable earlier in the program which you now need. Worse, when you come back later to add a new feature to the program, you will have forgotten how the program "works" and will end up adding "bugs" or errors, rather than features.

So what do you do when you have a reasonable grasp of BASIC, and have written some small programs and are ready to take on your first "Big" program? Well since computers are very methodical beasts, you can understand that they get along best with methodical people. I am not suggesting that this makes programming is more fun when you are not spending most of your time trying to track down bugs in a poorly-planned program.

Here is the formula I propose for preparing a big project (big for the PET is a program of more than 40 to 60 lines):

1. Define the task the program is to perform.
2. Draw a flow chart of the program operation.
3. Define names for the key variables you will use in your programs.
4. Write and test any special-purpose routines you plan to use.
modules and test each program in modules and test each module a 6 it is completed.
Completed, theroughly ram is first with data you expect to use, then with nunexpected" data.
5. Add final "internal documentation" remarks to the program.
6. File your flow chart and other paperwork where you can find them later.
7. Congratulate yourself on a well done project. Show it off to somebody (now, not back when you were still getting rid of the errors!)
8. Look at programs written by others, read the PET Paper and other publications. If you see
a "neat" way to do something, programing effort.

Now for a few comments on some of the steps.

Defining the task - now is the time to think the program all the way through. What formulas do you need? What will the computer dialog with the user look like? What will the program do if the user types the wrong response? What graphics do you intend to use? Will the user understand what the program wants him to do? After this step you should know exacty what a program RUN will look like.

Flow charting - experienced programmers often refuse to flowchart their programs and make fun of those who do. This is called "job security", since
program of any size without a flowchart is extremely difficult for anyone to modify leven the original programmer). These are the same people who scoff at putting comments or remarks int a program.
What is a flowchart? It's just a road map of the program you intend to write. People have dreamed up all sorts of special symbols to use in flowcharting different computer operations. I only use two symbols: a box a indicate some operationcision diamond to repre by the computer
Here is a flowchart for a program to put a symbol on the PET screen, then move it up if the user presses the "8" key, down if and right

Look closely at the flowchart. Will the symbol "blink" even if I depress the "g" key? What feature did I add that I didn't tell you about? Can you see where the GOTO statements are going to have to go to?

Notice that each diamond contains only two exit points: "Yes" and "No", since the PET can only make a yes or no decision. This also avoids the problem of a decision such as "IF $A=Z$ GO TO STEP 1 AND IF $A=$ GO TO STEP $16^{\prime \prime}$ where we haven told the computer what to do if A isn't equal to 1 or 2 .

DON'T DO TILS :

Define names for key variables PET BASIC allows you to use longer names for variables than do most other versions of BASIC. This allows you to use meaningful names for your variables. So if you are writing a program to calculate loan interest, don't call the annual percentage rate variable "B," call it "RATE" or "APR." Write it down so you don t call it "RATE" in one part of your program and "APR" somewher else!
Test special features first - it is easiest to find a "bug" if you know where to look. There is nothing more frustrating than entering an entire program which doesn't work - and you don know where to start looking the problem. Routines which a tape input and output, special graphic displays, and string manipulation routines are all
good examples of program segments which should be written and tested before they are used in a larger program. You usually add a few statements before these partial programs to feed them test data. If you have flowcharted your program you can assign blocks of line numbers for each step in the flowchart and use thesc pre-assigned line numbers when you write your special routines. Go back to your flowchart and add the line number for the start or the program segmint per in each box or diamond

Test the finished program with "unexpected" data - if other people are going to use your program, let them test it out using whatever instructions you are going to provide with the tape. You are going to provide instructions, aren't you?

If the user types in an incorrect r esponse which causes your program to mishohave, what are the consequences? The user playing a game may not mind, but f your program incorrectly computes a payroll check as result of user misunderstanding you may be in trouble.
Some readers may object at this point "wait a minute - remark ake up memory and so do longer variable names and program statements to protect the user from incorrect entries. what happens if my program ends u ining too large for the memory in my PET?"

My response is that your problem is net that your program is too large and must be cut down Your problem is that your PET is too small and needs more memory o do job you have set for it. Memory expansion costs money but in many apploation oney, but in many and cont far bad program will cost far more.

From The
 Commodore Himself

A problem with opening files to write on either built－in cassette \＃1 or external cassette $\$ 2$ has been discovered．When a file is opened，garbage will be written out instead of a proper data tape file header．Without this header， open the data file for input．

You may not have encountered this problem previously，because a program on the cassette prior to writing a data file．In this event，the start address of the buffer with the header information is initialized properly，but cassette data file operation could still be random．

Fortunately，there is a software patch you can implement in your BASIC program to force the open or write on tape to work every ime．Before on cassette \＃l：

$$
\begin{aligned}
& \text { POKE } 243,122 \\
& \text { POKE } 244,2
\end{aligned}
$$

And，on cassette \＃2：

$$
\begin{aligned}
& \text { POKE } 243,58 \\
& \text { POKE } 244,3
\end{aligned}
$$

Locations 243 and 244 containt the 10 and hi order bytes， respectively，of the address of the currently active cassette buffer．The start address of buffer 11 is $\$ 27 A \quad(\$ 2=2$ ， \＄7A－122）．Similarly，cassette $\$ 2$ is $\$ 33 \mathrm{~A}(\$ 3=3, \$ 3 A-58)$ ．

These POKE statements may remain in your BASIC program even after
ou start using the new ROM oftware which corrects the problem． \qquad ects
RND（ X ）generates a random number between \emptyset and 1 ．The argument X controls the generation of random numbers as follows：
$x<\theta$ generates a new sequence of xandom numbers using x a seed．Calling RND with the same Se ，when $\mathrm{X}<\boldsymbol{\theta}$ ，will generate the X ，when $X<$ ，will $^{\text {same random number for each } X \text { if }}$ X does not change．

Example：RND（－1）gives
$2.9919647 \mathrm{E}-08$
for as many times as $X=-1$ ．

$$
\begin{aligned}
& \text { RND (}-2 \text {) gives } \\
& 2.9920557 \mathrm{E}-08
\end{aligned}
$$

for as many times as $\mathrm{X}=-2$ ．
This is useful for debugging when you want the same random number qenerated．You can qet number with any negative with any negative number：
$x=0$ generates ． 564795882 each time you call．
$x>0$ will generate the next randomly sequenced random number if X doesn＇t change．If X changes，the new X is used as a seed to a new sequence of random numbers．

If you want to verify what the RND function actually does， enter the program：

10 INPUT R
 $20 \mathrm{X}=\mathrm{RND}(\mathrm{R})$
 30 PRINT X

40 GOTO 19

The new PET 2020 Printer is a fast，intelligent peri． pheral designed to attach to the PET 2001 personal computer，or to any IEEE 488 interface．It will print 80 columns wide on any standard $8 \frac{1}{2}$ inch width roll or fanfold paper，with a ribbon，or without a ribbon，on impact sensitive paper．It can handle all upper and lower case characters and all the PET 200 graphics on a 7 by 8 dot matrix．
A programmable character capability allows the user to design a special character or symbol（a company logo，for instance）．Through its character enhancemen feature，any character field feature allows the effect of white on black printing．

The 2020 prints through three copies at 120 cps ． The net speed is 50 characters per second．And that includes the time between lines．
The PET printer can，of course，list any PET pro grams．It also has full formatting capability allowing
Suppressed leading zeros
9.45

Forced leading zeros
0009.45
$\$ 595.00$
foating dollar sig
$\$ 595.00$
or Alphanumeric
An example format might be
AARAARA 999 \＄$\$ 5.99$
which would format data like this
APPLES $25 \quad \$ 4.45$

The PET 2020 begins listening to data on the IEEE bus when it recognizes its primary address which is factory assigned as device \＃4．
（The primary address can be modified by jumper or 4.11 so multiple printers may be connected on the same interface．）
Software standard in the PET 2001 allows transmission of data to a particular primary device number，as printer conmonaむる．

There are six secondary addresses which may be used on the PET 2020：
\＃0 Print data exactly as received．
\＃ 1 Print data to format
\＃2 Use data as format
\＃3 Set number of lines per page
\＃4 Enable verbose diagnostic messages
\＃5 Use byte data for programmable character．
The printer has an MOS Technology 6504 micro． processor， 32 kilobytes of ROM and 256 bytes of RAM． Through its own diagnostics，executed every time the printer is powered on，it will check out the RAMs and the ROMs，and turn on the ready light if all is in order．

The PET 2020 printer operates on 120 volts， 60 Hz ， 120 watts．A 220 volt connector is available as a power option．Line frequency can be modified at the factory to 50 hz for operation in those counties requiring such frequency．
Dimensions：
71／2＂high， $15^{\prime \prime}$ wide， $17^{\prime \prime}$ deep -20 ibs．

PORTRAIT
OF 2BE 1
вч zexe

Cacommodore

fLEA MARKET

SOFTUARE EXCHAOGE

THE FOLLOWING PROGRAMS ARE FOR SALE FOR $\$ 5.08$ EACH IF PURCHASED WITHOUT AN EXCHANGE PROGRAM. IF YOU HAVE A PROGRAM OF YOUR OWN TO ADD TO OUR FLEA MARKET, SEND IT TO US AND WE'LL SEND YOU THE PROGRAM YOU WANT. (PLEASE INCLUDE \$2.0日 FOR POSTAGE AND HANDLING.) IF YOU DON'T SEE WE'LL SEND YOU A COUPON WHICH you can return (along with the \$2.00) AT A LATER TIME.
SNAKE - Game for small children. Good graphics - almost no interaction.
YAHTZEE - EXCELLENT GRAPHICS Very well executed - one of the est we've seen.
SPADES - Great Graphics. Well done version of the familiar card game.
RND CHAR - POKES random characters on the screen. Useful for learning coding tricks.
SPIRAL - Pokes CHARACTERS on the screen in a spiral pattern. Useful for learning coding tricks.
TYPEWRITER -5- Mini word processor.
PRIME NUMBERS - Generates and saves prime numbers.

DIGITAL CLOCK - Hours and minutes. Good demo.
MORSE CODE TUTOR - Wire your PET to 'bark' (see issue \#1) and use this program to learn Morse code. Or learn it by sight nly.
ACATION BUDGET - Budget in advance or fill out an expense report. Non-graphic.

See Issue \#3 for descriptions. ADDITION GAME
OTHELLO FOR ONE
CODES
ROAD RALLY
SLOT MACHINE
STATES \& CAPITOLS
GRADES
HEX-DEC
MATH QUIZ
MATH QUIZ
USEFUL ROUTINES
PUBDOMDIS
NOTE
KLIDISKOP
KYBD UTILITY
RENUMBER \& LIST
HIMONDIS \& HIMON INTRO
LOMONDIS
AIR WAR
DOGFIGHT

SOFTUARE SHELF

SOFTWRRE SAles

CHASE-\$10. 00
BLOCKADE-\$10.00
SPACE TALK/SPACE FIGHT-\$10.00 BLACKJACK-\$10.00

The following seven programs constitute a set of routines which will carry out most of the sorts of statistical tests most programs are conversation the interactive be mass duplicated and sell for \$20.0日 complete Order smat II. 1.

- DESCSTATS -- takes a set of ata, either as single values or as grouped data, and calculates descriptive statistics -- mean, variance, standard deviation maximum and minimum values.

2. PROBF -- this program accetps test statistics produced from statistical tests -- the variance ratio, (F), Student's , Standardized normal deviate the probability of such It replaces looking value values in tablesing up the used as a subroutine. in all sed as a subro
3. IWAYANOVA -- this program performs analysis of variance on two or more sets of data, each set being the responses of a group of cases to a treatment, for example, two drugs and a control (three treatments). The number of cases for each treatment may be the same or

DEFLECTION-\$10.00
HOME DATA RETRIEVAL- $\$ 10.00$
STAT-\$20.00
ADDRESS FILE $\$ 10.09$
different. In the special case of two treatments, it is identical with the well-known T-test.
4. 2WAYANOVA -- similar to program 3, but each case is subjected to two different simultaneously, ${ }^{\text {a }}$ a A might be different drugs (or different dosages of the same drug) and treatment B different diets; alternatively, the treatment B ran be blocks of block design.
5. ANOVA2WAYR -- as in program 4, but there are two or more cases (replicates) for each treatment combination. All the analyses of variance programs included tests of significance.
6. SLR-- this program calculates linear regression, correlation coefficients and coefficient of determination, and tests the significance of designed for . This program is several valos dependent variable) for each value of x (independent variable).
7. XYSLR -- similar to SLR, but the X and Y values are in pairs.

If the tape you receive from us docs not load on your PET, send it back and we'll record it on the older model PET. We do not aupranter that fLEA MaRKLT programs will do anything more than load, since they are to sure thry will load and ere free from obvious errors

User Group notes

* * North Orange County

The Pet User's Group held it's first meeting last week at Computer Components, formerly Computer playground, on Westminister Blvd. and Golden West. We had about 25 people show up for a lively give and take session with two representatives from commodore who were here for the N.C.C. and agreed to meet wervice Dept. Cooper represented serval girls and she is one of se likely to contact if you call Customer Service (415) 327-4030. Leonard Tramiel, son of the president of Commodore represented Software Q.C. and generally filled us in on the state of things at Commodore. Generally, Leonard gave us the same excuses as we've been hearing all along: not enough people, and not enough time to get the work done. It seems the small technical staff that really know the PET are the same people who visit all the computer shows, answer technical phone calls, write the yet to be released, and manais ye next peripheral. They won't hire any more engineers because they say that would drive the costs up, so everything is delayed. For example, Chuck Peddle himself is writing the more technical parts of the user's manual and you can imagine how much time he has for that! Anyway, here's what we learned.

The PET manual and monitor tape have "about one week of work left", but since everyone working on them will be booked up with trade shows, they won't have time to finish it until the

Reprinted with permission from

 David E. Smithend of June. Then it will take a month and a half at the printers, and two weeks to mail. Translation: look for the manual and monitor tape by the end of August.

The printer that was supposed to be ready this month for delivery had this slight problem with its plexiglas cover fit. So the printer will not be delivered until September if you send in your money by the end of June. The printer uses the 6504 processor, and has an operating system in ROM and a RAM buffer. It will accept one of six commands from the PET via the IEE 488 bus including formatting of output, define programmable character, and \# of lines per page eject among others. prints the entire graphics set, plus any character you wish to field printing and continuous graphics in the horizontal direction only. Vertical has two dot spacing since it's 7X8 dot matrix. See printer copy example below. It's a terrific machine at $\$ 595$ but it's back ordered already.

The new basic ROM set is still being tinkered with on Leonard's desk, looking for more bugs. Because of lack of time again, the new ROMS (which will include the monitor in them) won't be ready until November. the leck aut problem available the lock out prob a designated the ala ROM and fixes the problem of Microsoft having written this "very small bit of non-interruptable code" for a
system that lives on interrupts from everything, Hence there is a small window where the PET goes out to lunch and you have to turn it off to recover.

On servicing, Computer components now has and tape to trouble shoot the PET. A "serviceman's package" will be available for $\$ 30.00$ that includes a schematic of the video board only and some scope tracings for that board, the connectors needed to implement the ROM diaynostics, and a PET TEST program tape. However, we now have all that stuff in the club as you'll see below.

The extra memory expansion box is "simple to whip together" but they had mechanical problems and not enough engineering time so it of the year. end of the year.
completed hardware wise software isn't. By the bat the Chen Wang, who wrote tiny BASIC for Dr. Dobb's Journal last year (which was stolen by Radio Shack for their level 1 BASIC), is now working for Commodore, and is writing the disk operating system. The floppy will have two 6504 microprocessors; one for formatting, and the other for communications with the PET. The controller wll be a dual a second floppy a second floppy later the bytes per side since it's on the IEE 488 bus, there is almost no limit to the number of floppies you could add to your PET. The floppy should be available in October or November and cost "\$400 to $\$ 1,000 \mathrm{n}$ so says Lennie.

The NCC featured several new products of interest to PET their S-1ga inectronics showed

PET. It provides all the bus signals and will run with the Dazzler and dynamic memories very well. It uses a phase locked loop to synch up with the is provided. It looks like a great product.

The real block buster at the show was a product that Houston Instrument, the company that makes industrial plotters of all kinds and abilities, has just announced a digital flat bed plotter for personal computing for $\$ 1.000$. It plots on $81 / 2$ by 11 paper and looks just like a $\$ 4,504 \mathrm{H} . \mathrm{P}$. plotter, except it doosn't change pens for you, but it does everything else you need. It looks like the first of real quality commercial products from the Eraditional computing industry tailored to this market. They already have a huge backorder as reting one today! Ey theway it has a serial and paralloi interface so it will hook right p to the DET. See me for more info on it.

HOW TO RUN THE ROM
DIAGNOSTIC IN YOUR PET
Attach a cinch connector (available at computer components) to the 8 bit parallel port. The connector should be wired as shown with pin to pin 5 , pin B to 2 , pin 7 to 3 , pin D to 4, pin 8 to pin , 9 and pin pin ópla K to pins keys should be between pins B 1 , and between pins M and 11. This assures proper In ad
In addition, you will need o jumper the keyboard pins on small daisv hooks bord using
haven't found that 20 pin molex keyboard connector anyplace yet. On the Keyboard male connector, jumper pin 1 to 17 and to 9 ; pin 2 to 18 and to 10 ; pin 3 to 11; pin 4 to 12 ; pin 5 to 13 ; 8 to 16 . Remove the keyboard connector before you do this.

Now with those two connectors in place, turn the connectors off and then on again, and the ROM diagnostic test will be enabled. The PET checks to see if the connectors are in place on power up and if so, jumps to the diagnostic test. A cursor will move across the screen until it runs off the lower right corner. Then if the board checks out, the red led on the main circuit board win ligic up. This checks all the main board. A pircuitry on the mat up on the screen to visually check the video circuitry. Other tests are available on tape that include a ROM test that checks the checksum for the ROMS and a memory test for RAM.

BASIC BUG FOR OPENING CASSETTE FILES

There is a bug that writes garbage on the tape for the file header when a file is opened. But it only occurs if you haven't loaded a program for tape previously. Because of this, it s impossible to read back data files. The fix 243,122 and POKE 244, 2 POKE 243,122 and POKE before doing open statements to write to cassette number 243,58 and pOKE 244,3. This restores the lo and hi order bytes of the address of the currently active cassette buffer. The addresses are Cassette \#i buffer: 27 AH and 12: 33Ah.

HOW TO HOOK UP A JOYSTICK
TO THE PET
(See Gary Wagner (714) 870-6799 for more on joysticks.)

Buy a joystick with four l00k pots on it. Hook each wiper of each pot to one of four data lines on the 8 bit user port. Connect the sides to ground. POKE 59459, 255 . This sets all the data bits to output mode. Then Poke shigh in the set all the bits high in POKE data register as inputs, and PEEK (59471). When you move the joystick, you depending on where the joystick is. When you input those bits you can tell which were grounded, and hence where the joystick is.

CGNJ (Amateur Computer Group of New Jersey) PET Subgroup meets gain on the 4 th Friday at UCTI ($7: \varnothing \emptyset$ to $1 \emptyset: 3 \emptyset \mathrm{PM}$).

SPHINX (Society of PET Handlers and INformation exchange) meets the 2nd Thursday at 1025 2nd St in Oakland, at 7:め. Contact Pete Rowe, Lawrence Hall of Science, Berkely, California.
Wisconsin PET Users meet every 1st Thursday. Call (608) 2492666 for information.

PUG (PET Users Group, South San Francisco Bay area) meets the ist Wednesday in the Mercury Room, 310 Showers Drive, Mountain View, CA, at 7:0 PM.

North Orange County Computer Club, PET sub group, has been formed by David Smith, 3030 ropaz, Apt. A, Fullerton, CA 92631.

Contact John Fung (612-376-5465) if you're in the Twin Cities, MN area.

PET Owners in Dallas, TX should contact Carl Martin, 2001 Bryan Tower Suite 3800 Dallas, TX 75201 for User Group info.

SOFTWRRE

Please ship the following taped programs. I enclose full payment as described in Flea Market or Software Shelf columns.
(See Kim Clark (714) 774-1105 for more info on music and the PET)

Wire a space cinch connector as follows: connect pin M (CB2) to a 15 ohm followed by a 47 K ohm resistor. Conenct the other end of the 47 K to ground. pick up the audio on each side of the 15 ohm resistor and plug into a the Radio Shack \$3 job. Put the above three poke codes in a small program and vary C with a random number and you'll have instant music. Be sure to re-poke 59467,0 or else your tape drive won't work.

Name
Address
City \qquad State \qquad Zip

MC/VISA/BAC\# \qquad Exp. Date

MC InterbankNo.
Required Credit Card Signature
MAIL TO:

